
Modern Data Analytics

Martial Luyts

Catholic University of Leuven, Belgium

martial.luyts@kuleuven.be

Contents

0. Introduction . 1

0.1. Goal & organisation of the course . 2

0.2. Scheme . 4

0.3. Evaluation & deadlines . 5

0.4 Questions? . 7

1. Python Fundamentals for Data Scientists 8

1.1. Python . 9

1.2. Writing Code . 15

i

1.3. Google Colab . 28

1.4. Git, Github & Hugging Face . 35

1.5. Kaggle . 44

1.6. Environments . 47

1.7. Object Oriented Programming . 53

c© Martial Luyts – MDA course ii

Part 0:

Introduction

c© Martial Luyts – MDA course 1

0.1 Goal & organisation of the course

In the course of MDA, you will

• Acquire the necessary practical skill set and theoretical knowledge to deal with a
wide variety of data science tasks.

• Be exposed to a solid set of tools to successfully approach machine learning
(ML) problems.

• Focus on modeling knowledge, as well as knowledge related to setting up the
required IT infrastructure to execute ML projects in practice.

c© Martial Luyts – MDA course 2

Organisation:

• Traditional on-campus lecture format in which a lecture introduces the
material to be studied by you.

• After class, recording of the lecture will become available on Toledo.

• Each lecture is related to a specific theme of the course (see Section 0.2).

• Throughout the course, examples of implementations will be given using the
Python programming language or the AWS cloud environment.

• To successfully complete the course, you will need to be able to execute Python
code in both Jupyter Notebook and Integrated Development Environment (IDE).
Version of Python that will be used is 3.9.13.

c© Martial Luyts – MDA course 3

0.2 Scheme

Date Content Teacher

Part 1: Python Fundamentals for Data Scientists

11/02 Introduction to Python and Object Oriented Programming Martial Luyts

18/02 Data Science in Python: Packages Ruben Kerkhofs

25/02 Data Science Algorithms in Python Gregory van Kruijsdijk

04/03 Machine Learning Pipelines in Scikit Learn Gregory van Kruijsdijk

Part 2: Dashboarding in Python

11/03 Dashboarding in Python: Shiny for Python Martial Luyts

18/03 Q&A session 1

Part 3: IT infrastructure for Data Science and Analytics

25/03 Key Components of an Analytics Infrastructure Ruben Kerkhofs

01/04 Code Collaboration and Versioning Gregory van Kruijsdijk

22/04 Containerisation using Docker Martial Luyts

29/04 Cloud Computing 1 Martial Luyts

06/05 Cloud Computing 2 Martial Luyts

13/05 Data Processing Analytics, Scalability, and Performance Ruben Kerkhofs

20/05 Q&A session 2

c© Martial Luyts – MDA course 4

0.3 Evaluations & deadlines

The evaluation of MDA is based on four components:

1. A group report which consists of a description of your group project. This
group project is submitted on a per-group basis meaning that there is only a
single submission per group. (20%)

2. A group project in which you work together with your group to solve a data
science project which will be presented during an oral examination (in group).
(50%)

3. Your individual questions asked to you during the group project presentation.
Each student should expect to receive questions on both the group project
content as well as any of the course material presented during the lectures.
(20%)

c© Martial Luyts – MDA course 5

4. Peer evaluation where your performance is assessed by your fellow group
members. (10%)

The following deadlines needs to be respected:

• 01/03: Group composition

• 24/03: Project proposal

• 27/05: Project submission

!!Important: These deadlines needs to be respected. Late submission will not be
allowed, and results automatically in an NA (Not Attended) score on the total grade.

!!Important: Presentations of the group project will be planned outside the exam
period. Details about the date will be follow soon on Toledo!

c© Martial Luyts – MDA course 6

0.4 Questions?

Do you have any questions?

• Ask them in class and/or during the Q&A sessions

• Ask them in the Discussion board on Toledo

!!Important: Questions related to the course will not be answered by mail! The
lecturers of the course are happy to provide you with all necessary info during the
official moments and directories.

c© Martial Luyts – MDA course 7

Part 1:

Python Fundamentals for Data Scientists

c© Martial Luyts – MDA course 8

1.1 Python

• Nowadays, Python is considered as one of the most popular programming
languages among data scientists, and beyond.

• Generally used when data analysis tasks need to be integrated with web apps or
if statistics code needs to be incorporated into a production database.

c© Martial Luyts – MDA course 9

• While R is mainly used for traditional statistical computing, Python is a good
tool for the analysis of extended data science tasks like NLP, computer vision,
etc.

• Download & start: Anaconda

• Installation: www.anaconda.com/products/individual

• Instead of going to the Python.org website to download the required version
of Python and then installling the different packages needed, Anaconda, i.e.,
a package manager, is a quicker introduction

• Anaconda offers the most useful packages for mathematics, science and
engineering

• In particular, over 300 packages are automatically installed with Anaconda

c© Martial Luyts – MDA course 10

c© Martial Luyts – MDA course 11

• It can happen that some packages are not installed yet.

• Solution: Use the ”pip install” command in the command window in order
to fetch a particular package and install it on your computer:

→ c:\Users\u0106491\Documents>pip install airflow

c© Martial Luyts – MDA course 12

• Important packages:

• SciPy and Numpy for numerical computing

• Pandas for easy data processing, cleaning, etc.

•Matplotlib to produce graphs

• Scikit-Learn for machine learning

• Statsmodels for statistical models and unit tests

• PIL for basic image importing, manipulation, and exporting

c© Martial Luyts – MDA course 13

•MoviePy is to videos what Pillow is to images. It provides a range of
functionality for common tasks associated with importing, modifying and
exporting video files

• Requests if you application sends any data over HTTP

• Plotly & Shiny to produce interactive plots & dashboards

• PyTorch: for mathematical operations over tensors. Particular useful for
deep learning programming

• Transformers for the use of state-of-the-art pre-trained machine learning
models. Particular useful in the area of NLP and computer vision

c© Martial Luyts – MDA course 14

1.2 Writing Code

• When developing and executing code in Python, IDEs (Integrated
Development Environment’s) and notebooks play crucial roles.

• An IDE is a program dedicated to software development, integrating several
tools specifically designed for software development:

• An editor designed to handle code

• Build, execution and debugging tools

• Source control

c© Martial Luyts – MDA course 15

• In Python, for example, several IDEs are available:

• Atom

• Spyder

• PyCharm

• Visual Studio (VS) Code

• In what follows, we will discuss the latter two IDEs, i.e., PyCharm & VS Code

c© Martial Luyts – MDA course 16

1. PyCharm

• Download: www.jetbrains.com/pycharm/

• One of the best and full-featured, dedicated IDE
for Python

• Available in both paid (Professional) and free
open-source (Community) editions, for Win-
dows, Mac OS X, and Linux platforms

• Supports Python development directly

c© Martial Luyts – MDA course 17

c© Martial Luyts – MDA course 18

2. Visual Studio

• Download: code.visualstudio.com/download

• Main difference compared to PyCharm is the
user interface:

• PyCharm provides a comprehensive IDE with
a more traditional layout, including various
panels and tool windows

• Visual studio offers a lightweight editor
with a minimalistic interface that can be
customized extensively with extensions and
themes

• More details: https://bit.ly/3UBx58g

c© Martial Luyts – MDA course 19

c© Martial Luyts – MDA course 20

• Alternative to IDEs, Jupyter notebooks can also be considered

• Jupyter notebook = Open-source web application that allows you to
create and share documents that contain live code (in Python and other
packages) with supporting equations, visualizations, and narrative text

• Jupyter supports over 100 programming languages, including Python, R,
Julia, and Scala

• Can be shared with others through email, Github, etc.

• In this course, Jupyter notebooks (& VS Code) are used for executing Python
code

c© Martial Luyts – MDA course 21

• To run code in Jupyter notebook, the IPython kernel is used, but additional
kernels may be installed

c© Martial Luyts – MDA course 22

c© Martial Luyts – MDA course 23

• Different components are available in a Jupyter notebook:

•Menu bar presenting different options that may be used to manipulate the
way the notebook functions

• Toolbar giving a quick way of performing the most-used operations within
the notebook, by clicking on an icon

• Cell, either ”markdown” (comments, titles, etc.) or ”code” (Python scripts)

c© Martial Luyts – MDA course 24

• All actions in the notebook can be performed with a mouse, but keyboard
shortcuts are also available for the most common ones:

• Shift-Enter to execute the current cell, show any output, and jump to the
next cell below. If this is invoked on the last cell, a new cell will be created
below. This is equivalent to clicking the Cell, Run menu item, or the Play
button in the toolbar

• Ctrl-Enter to execute the current cell, show the output and stay in the cell

• Tutorials:

• jupyter-notebook.readthedocs.io/en/stable/notebook.html

• realpython.com/jupyter-notebook-introduction/

c© Martial Luyts – MDA course 25

• www.datacamp.com/community/tutorials/tutorial-jupyter-notebook

• jupyter-notebook-beginner-guide.readthedocs.io/en/latest/

• www.tutorialspoint.com/jupyter.index.htm

• In addition, extensions can be added to your notebook:

• Info: towardsdatascience.com/jupyter-notebook-extensions-517fa69d2231

• Run the following lines in your command line on your PC/Mac:

pip install jupyter contrib nbextensions && jupyter contrib nbextension install -user

c© Martial Luyts – MDA course 26

• Alternatively, one could also consider Jupyterlab, i.e., the next-generation
user interface including notebooks.

• It has a modular structure, where you can open several notebooks or files
(e.g., HTML, Text, etc.) as tabs in the same window. Therefore, it offers
more of an IDE-like experience

c© Martial Luyts – MDA course 27

1.3 Google Colab

• While traditional Jupyter notebooks are versatile and interactive environments
that allows users to integrate code, text, equations, and visualizations in a single
document (notebook), it runs on local systems

• Constraint: Limited computational power available

• Question: What if you have a computer that can’t take the workload for, for
example, training a machine learning model in Jupyter notebook locally?

• Possible solution: Google Collaborate (Colab)

• Google Colab = A free cloud-based platform provided by Google that
allows users to write and execute Python code collaboratively in a Jupyter
notebook environment

c© Martial Luyts – MDA course 28

• It offers free GPU and TPU access, which could be useful when significant
computation power is required

• It is integrated with Google Drive (by mounting; see later), allowing users

• To access large datasets stored in Google Drive without needing to upload
them every time

• To save their work directly to Google Drive for easy access and sharing

• To load pre-trained models and other assets directly from Google Drive

• No setup is required, making it convenient for quick coding and collaboration

c© Martial Luyts – MDA course 29

• Documentation: colab.research.google.com/notebooks/welcome.ipynb

• To get started

• make sure you have a google account (gmail)

• then go to this link: colab.research.google.com

• When a new notebook is created, Colab will create Untitled0.ipynb and saves it
to your Google Drive in a folder named Colab Notebooks

• You can choice your runtime (CPU, GPU, TPU)

c© Martial Luyts – MDA course 30

c© Martial Luyts – MDA course 31

• Question: How can a Google Drive be mounted in Google Colab?

• Answer:
1. Import the ”drive” module from the ”google.colab” package. This module

provides functions to interact with Google Drive.

2. Use the ”mount” function to mount the Google Drive. The ”mount” function
requires the path where to mount the drive, which is usually ’/content/drive’.

c© Martial Luyts – MDA course 32

3. When you run the above code, you will see a prompt with a link to obtain an
authorization code. Follow these steps:
1) Click on the URL provided in the output
2) Select the Google account you want to use
3) Allow Google Colab to access your Google Drive

c© Martial Luyts – MDA course 33

4. The Google Drive files can now be accessed as if they were on your local file
system. For example, to list the files in the Drive, the ”ls” command can be
used:

c© Martial Luyts – MDA course 34

1.4 Git, Github & Hugging Face

• Imagine you are working on a group project, and wishes

• To split the task (one will work in a separate item)

• To avoid sending files via email, etc.

• To track changes

• To access the code from another device

• Question: What kind of system is available that can ensure these demands?

c© Martial Luyts – MDA course 35

• Solution: Git and Github

• Git was developed in 2005 by Linus Torvalds as open source software for
tracking changes in a distributed version control system, i.e., a peer-to-peer
type of version control where the complete codebase – including its full
version history – is mirrored on every developer’s computer.

• Changes to files are tracked between computers, from one developer’s
workstation to another

c© Martial Luyts – MDA course 36

• Compared to other version control systems, Git is

• Responsive

• Easy to use

• Inexpensive

• In particular, Git distinguish itself from other version control systems by
means of its branching model

• Branching allows you to create independent local branches in your code

• In other words, developers can create new ideas, set aside branches for
production work, jump back to earlier branches, and easily delete merge,
and recall branches at the click of a button

c© Martial Luyts – MDA course 37

• To keep track of and share Git version control projects outside of your local
computer/server, GitHub, i.e., a cloud-based database, can be used.

• An individual’s Git repositories can be remotely accessed by any authorized
person, from any computer, anywhere in the world.

c© Martial Luyts – MDA course 38

c© Martial Luyts – MDA course 39

• Through Github, you can share your code with others, giving them the
power to make revisions or edits on your various Git branches

c© Martial Luyts – MDA course 40

• As changes are introduced, new branches are created, allowing the team to
continue to revise the code without overwriting each other’s work. These
branches are like copies, and changes made on them do not reflect in the
main directories on other users’ machine unless users choose to push/pull
the changes to incorporate them

• It is an essential tool to know nowadays for data science/related jobs

• Useful tutorial: youtube.com/watch?v=mj-qvsxPHpY

• In order to use a GitHub repository, use the following code:

> git clone https://github.com/zspatter/weather-forecast.git

• This could be useful for considering models where the source code is available
on GitHub, for example

c© Martial Luyts – MDA course 41

• Another useful and popular community platform is Hugging Face

• It is a powerhouse for natural language processing, computer vision and
reinforcement learning, offering state-of-the-art open-source pre-trained
(language) models like BERT, GPT, and many more

c© Martial Luyts – MDA course 42

• It incorporates the state-of-the-art Transformers library, developed by
Hugging Face, and can be incorporated in your Python code as follows:

• In addition to pre-trained models, Hugging face also includes datasets,
research papers & a community place for data scientists and others.

• In this course, the following GitHub repository is used for sharing Python code:

github.com/GregCollab/G0Z39A

c© Martial Luyts – MDA course 43

1.5 Kaggle and UCI Machine Learning
Repository

• Question: Does there exist other platforms, in addition to HuggingFace, that
offer free datasets?

• Answer: Kaggle and UCI Machine Learning Repository

• Kaggle is a data science competition platform and online community for
data scientists and machine learning practitioners under Google.

• Kaggle enables users to

• find and publish datasets

• explore and build models in a web-based data science environments

• work with other data scientists

• enter competitions to solve data science challenges

c© Martial Luyts – MDA course 44

c© Martial Luyts – MDA course 45

• In addition, the UC Irvine Machine Learning Repository is available,
offering datasets for classification, regression, clustering and others

c© Martial Luyts – MDA course 46

1.6 Virtual Environments

• Assume you are working on app A, using your system installed Python and you
pip install packageX version 1.0 to you global Python library.

• After a while, you switch to project B on your local machine, and you install the
same package packageX but version 2.0, which has some breaking changes
between version 1.0 and 2.0.

• When going back to run appA, it can occur that your app does not run, and you
get a lot of errors

• Question: How can you solve this issue?

c© Martial Luyts – MDA course 47

• Answer: Virtual Environments

• Virtual environment (VI) = Python environment s.t. the Python
interpreter, libraries and scripts installed into it are isolated from those
installed in other virtual environments, and (by default) any libraries installed
in a ”system” Python, i.e., one which is installed as part of your operating
system.

• As implication, a project in a defined VI becomes its own self contained
application, independent of the system installed Python and its modules

c© Martial Luyts – MDA course 48

• A new VI has its own pip to install libraries, its own libraries folder, and its
own Python interpreter for the Python version you used to active the
environment.

• To set up a Python environment, the virtualenv package can be used.

Steps:

1. Install virtualenv in your command line:

c© Martial Luyts – MDA course 49

2. Create a new project folder, cd to the project folder in your terminal, and
run the following command:

> python<version> -m venv <virtual-environment-name>

Example:

3. To activate the VI, use the following command:

c© Martial Luyts – MDA course 50

4. To install all packages, it is best to generate a text file listing all your
project dependencies:

5. Instead of installing each dependency one by one, all dependencies listed in
the requirements.txt file can be installed directly using the following
command:

c© Martial Luyts – MDA course 51

6. To deactivate the virtual environment, use the following command:

• Documentation:

• bit.ly/3h4f8ty

• bit.ly/3r5KUL4

c© Martial Luyts – MDA course 52

1.7 Object Oriented Programming

• Python is an Object Oriented Programming (OOP) language

• OOP is a style of programming used to build modular, maintainable, and
scalable applications

• It is a way of organizing code that uses classes (representing concepts) and
objects (instances of classes) to represent real-world entities and their behavior

• Classes can be thought of as a ’blueprint’ for objects. These can have their
own attributes (characteristics they possess), and methods (actions they
perform)

Example: Consider the class ”Dog”

• Dogs usually have a name and age, i.e., instance attributes

• Dogs can also bark, i.e., a method

c© Martial Luyts – MDA course 53

• Remark 1: All classes have
a function called init (),
which is always executed when
the class is being initiated. It
is used to assign values to ob-
ject properties, or other oper-
ations that are necessary to do
when the object is being cre-
ated.

• Remark 2: self parameter
is a reference to the current
instance of the class. It allows
us to access the attributes and
methods of the object.

c© Martial Luyts – MDA course 54

• Key data science libraries such as pandas, numpy, and scikit-learn all heavily rely
on OOP

• Question: How can you see this?

• Answer: In scikit-learn, for example, a regression model is as an instance of a
class, and it has a fit() method to train your machine learning model or a
predict() method for prediction

c© Martial Luyts – MDA course 55

• OOP allows objects to interact with each other using four basic principles:

• These four principles enables objects to communicate and collaborate to
create powerful applications

c© Martial Luyts – MDA course 56

• Tutorials:
• bit.ly/38AE7Rj

• bit.ly/3ryOqOa

• bit.ly/3poTrHg

• Let’s get convinced with a simple example, i.e., build a linear regression model
(as you always do) or using OOP

→ Linear regression.ipynb

c© Martial Luyts – MDA course 57

	0. Introduction
	 0.1. Goal & organisation of the course
	 0.2. Scheme
	 0.3. Evaluation & deadlines
	 0.4 Questions?
	1. Python Fundamentals for Data Scientists
	 1.1. Python
	 1.2. Writing Code
	 1.3. Google Colab
	 1.4. Git, Github & Hugging Face
	 1.5. Kaggle
	 1.6. Environments
	 1.7. Object Oriented Programming

